2020数学高考必背公式_高考必背数学公式整理

高二数学知识点及公式2020

数学是人类知识活动留下来威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙,下面给大家分享一些关于 高二数学 知识点及公式,希望对大家有所帮助。

2020数学高考必背公式_高考必背数学公式整理2020数学高考必背公式_高考必背数学公式整理


2020数学高考必背公式_高考必背数学公式整理


高二数学知识点及公式1

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题 方法 :优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高二数学知识点及公式2

等数列

对于一个数列{an},如果任意相邻两项之为一个常数,那么该数列为等数列,且称这一定值为公,记为d;从项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列

对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从项a1到第n项an的总和,记为Tn。

那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:

a2=a1-q,

|a-b|≥|a|-|b|-|a|≤a≤|a|a3=a2-q,

a4=a3-q,

````````

an=an-1-q,

将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);余下a1和(n-1)个q的乘积,也即得到了所述通项公式。

此外,当q=1时该数列的前n项和Tn=a1-n

当q≠1时该数列前n项的和Tⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。n=a1-(1-q^(n))/(1-q).

高二数学知识点及公式3

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

高二数学知识点及公式2020相关 文章 :

★ 2020高二数学知识点总结

★ 高二数学知识点总结2020

★ 2020高中三年数学知识点顺口溜与公式大全

★ 2020高中数学知识点梳理

★ 2020高考数学知识点总结大全

★ 高二数学知识点总结

★ 2020年高考数学知识点总结

★ 高考数学知识点总结2020

★ 2020高二数学题合集

★ 2020高二数学教案精选

高中必背数学公式

(1)把具体问题转化或归结为排列或组合问题;

公式其实不多,关键是会套。我不同意楼上的观点,没公式怎么做题目。

b2-4ac<0注:方程有共轭复数根

高中要背的公式主要就这么几个

1.导数公式,导数的意义(即在该点的切线斜率)

2.微积分(如果学的话)

3.平面(空间)向量基本定理

4.点到直线的距离公式

5.基本不等式,柯西不等式

6.几何证明定理(面面平行之类的)

7.向量法计算二面角线面角公式(法向量)

8.数列中有点杂,主要有等(等比)求和,通项公式,求和比较常用的有累加法,裂项相消法,错位相减法。通项里有个一阶线性的公式

10.二次ctg2A=(ctg2A-1)/2ctga函数 韦达定律

11.解析几何里 主要是运用定义和统一定义,还有准线的表达式

12.就是定义搞清楚

主要就这些吧,公式不多,但是要融会贯通也不简单,还有一些小技巧也很有用,到时候老师会教的。可能不太全,毕竟好久没看书了

高中数学必背公式大全 高考数学重点公式总结

直棱柱侧面积S=c·h

很多人想知道在高中数学的学习上有哪些需要背的公式,高考数学中必背的重点公式有哪些呢?下面我为大家介绍一下!

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

高中数学重点公式大全 1、一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

2、立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

锥体体积公式V=1/3SH圆锥体体积公式V=1/ir2h

柱体体积公式V=sh圆柱体V=pir2h

3、图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)(a+b-c)1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

高中数学常用公式汇总 1、两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tan(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。B)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

2、倍角公式

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

3、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

4、和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

5、某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

6、正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

7、余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

8、乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

9、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b

10、|a-b|≥|a|-|b| -|a|≤a≤|a|

高中数学所有公式大全 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1x2=c/a 注:韦达定理

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有两个不相等的个实根

b2-4ac0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

高中数学常用公式

弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r

在高中阶段中数学的学习,公式是必背的。高中数学的难度一直都是所有科目中的,尤其是对于女生来说,而掌握公式是学好数学的必要条件。下面小编给大家整理了关于高中数学常用公式的内容,欢迎阅读,内容仅供参考!

高中数学常用公式

1三角不等式

|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/aX1·X2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。根

2三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式tan2A=2tanA/(1-tan2A)

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

3半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

4和化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n·2

2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

斜棱柱侧面积S=c'·h

正棱锥侧面积S=1/2c·h'

正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l

球的表面积S=4pi·r2

圆柱侧面积S=c·h=2pi·h

圆锥侧面积S=1/2·c·l=pi·r·l

锥体体积公式V=1/3·S·H圆锥体体积公式V=1/3·pi·r2h

柱体体积公式;V=s·h圆柱体V=pi·r2h

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标

圆的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0

抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py

直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h

正棱锥侧面积S=1/2c·h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2

圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l

锥体体积公式V=1/3·S·H

柱体体积公式V=s·h圆柱体V=pi·r2h

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

5和化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

6某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

2+4+6+8+10+12+14+…+(2n)=n(n+1)5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3

7常用导数公式

1、y=c(c为常数)y'=0

2、y=x^ny'=nx^(n-1)

3、y=a^xy'=a^xlna

4、y=e^xy'=e^x

5、y=logaxy'=logae/x

6、y=lnxy'=1/x

7、y=sinxy'=cosx

8、y=cosxy'=-sinx

9、y=tanxy'=1/cos^2x

10、y=cotxy'=-1/sin^2x

11、y=arcsinxy'=1/√1-x^2

12、y=arccosxy'=-1/√1-x^2

13、y=arctanxy'=1/1+x^2

14、y=arccotxy'=-1/1+x^2

怎样学好高中数学

一、基础知识点是解决数学问题的开始

把书中所有的名词定义和公式全都记住,不愿意背的同学可以每天都翻书看看,多读几遍,这样也助于自己对数学知识点的记忆。

二、重视数学问题的解题步骤

数学大题的解题过程都是按照步骤得分的,因此万万不可随意糊弄过去,这次同学们可能不在意,但当成绩出来之后,才知道后悔就什么都晚了。

所以在课上对于老师讲的规范一定要记下来,这样也好作为日后自己解题时的标准步骤,让自己尽量不丢分,这才是高效的学习方法,不丢分多得分。

三、经典题型收集整理装订

一般数学的两道大题就占了卷纸一面的二分之一,所以每次老师讲过之后,把标准写在空白处,可以的话就把这半页卷子裁下来。

以后的卷子也一样,订在一起,像是错题本或练习册一样,没事就可以用来复习。在卷子的背面可以抄一些类似的大题变形题或是历年高考中出现的经典题。

高中数学技巧解题方法

1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;

3,若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

4,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

5,函数奇偶性1、对于属于R上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇(2)通过分析确定运用分类计数原理还是分步计数原理;偶性作用不大,一般用于选择填空

6,数列爆强定律:1,等数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+qmS(n)可以迅速求q

7,数列的利器,特征根方程。(如果看不懂就算了)。首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

高三数学提升的小窍门

一、数学公式定理掌握好

课本上的例题做完,接着课后练习也要跟着做,课后练习的一些题目是综合题,把新的知识点和前面学过的知识点结合起来,帮助进步一步学习和巩固。

二、进行专题、难题训练提高

做题的时候不要怕难题,有的学生看到难题就放下来,一直练习自己会做的题目,这样很难得到提高,可以尝试多做难题,不要有畏惧心理,如果一直不去攻克难题,那考试分数肯定提不上来。

首先,看到难题要大胆的去做,思维活跃起来,多想知识点,这个方法不行,没关系,再分析,再审题,找其他的方法,如果一直不会,可以参,看看里是怎样答题的,解题思路是什么样的,里面的解题方法是自己不会的还是自己会的没有想到的,然后自己去总结去反思。

高考数学公式?

简证:取AC中点,则平面90°易知EFGH为平行四边形

新课标与以前的版本没多大区别,主要是一个知识点排版前后的问题,所以也就不存在新课标公式一说!

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

建议你买一本高考辅导书,对于数学全面掌握才是关键啊!!

祝你考试成功!!!

同样的,我们还知道cos(a+b)=cosaco-sinasinb,cos(a-b)=cosaco+sinasinb高考大纲里都有

高三数学知识点及公式总结大全

cos3α=4cos^3(α)-3cosα

高三数学重要知识点精选总结1

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴与简易逻辑:的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念等数列等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平商的关系:面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

EFGH为长方形.若对角线等,则为正方形.

高三数学重要知识点精选总结3

立体几何初步

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

13.恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分 老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及

(5)、高三数学教师教学工作总结

(6)、高三复习班数学班主任工作总结

高三数学知识点公式总结 高中数学答题方法总结

或者说专门找一个小笔记本来抄写公式或定义,容易翻看又方便携带。没事多看看就记下来了。这真的是高效学习数学的一个小窍门哦。

很多人想知道高三的有哪些吧必背的重要知识点,下面我为大家整理了一些高中数学必背知识,供参考!

直棱柱侧面积S=ch斜棱柱侧面积S=c'h

高三数学必背公式知识点大全 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

高考数学答题方法19条规律 1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

11、数列的题目与和有关,优选和通公式,优选作的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

12、立体几何问如果是为建系服务的,一定用传统做法完成,如果不是,可以从问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

14、概率的题目如果出解答题,应该先设,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

17、问题优先选择去,去优先选择使用定义;

18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

高中必背数学公式

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

高中数学公式是高考数学复习至关重要的知识点,为了帮助高三考生进行高考数学的复习。下面我给你分享高中必背数学公式,欢迎阅读。

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

高中必背数学公式:一元二次方程的解

也可以自己再做一遍,加强自己这道数学题的理解。长时间的积累会让自己的数学成绩有个显著的提高。

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

高中必背数学公式:立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

锥体体积公式V=1/3SH圆锥体体积公式V=1/ir2h

柱体体积公式V=sh圆柱体V=pir2h

高中必背数学公式:图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)(a+b-c)1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

2022高考数学必考知识点考点总结大全

2cosAsinB=sin(A+B)-sin(A-B)

数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的2022高考数学必考知识点考点 总结 大全,希望大家喜欢!

基本的是做课本上的例题,课本上的例题思路比较简单,一个知识点对应的一个例题,把这些例题看过一遍后,能自己做出来,做题过程是的记忆数学公式定理的过程,这一步不能省,不要想办法背数学公式定理,只有边用边记忆,才能真正的理解和应用。

目录

2022高考数学必考知识点考点

高考数学必背知识

如何提高高考数学成绩

2022高考数学必考知识点考点

一、、简易逻辑(14课时,8个)

1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)

1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)

1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)

五、平面向量(12课时,8个)

1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)

1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式。

七、直线和圆的方程(22课时,12个)

八、圆锥曲线(18课时,7个)

1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

九、直线、平面、简单何体(36课时,28个)

1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。

十一、概率(12课时,5个)

1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验。

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。

十三、极限(12课时,6个)

1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。

十四、导数(18课时,8个)

1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。

十五、复数(4课时,4个)

1.复数的概念;2.复数的1、高中三角函数公式大全:两角和公式、倍角公式、三倍角公式、半角公式加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。

高考数学必背知识

1、圆的定义:

平面内到一定点的距离等于定长的点的叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有

(2)过圆外一点的切线:

①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:

通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

一、随机

主要掌握好(三四五)

(1)的三种运算:并(和)、交(积)、;注意A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)的五种关系:包含、相等、互斥(互不相容)、对立、相互。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为的概率;(2)古典定义:要求样本空间只有有限个基本,每个基本出现的可能性相等,则A所含基本个数与样本空间所含基本个数的比称为的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2):P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互)时,要考虑二项概率公式.

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,用系统抽样的方法抽取样本。

3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

如何提高高考数学成绩

有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。打个比喻:有很多人,因为工作的需要,几乎天天都在写字。结果,写了几十年的字了,他写字的水平能有什么提高吗?一般说,他写字的水平常常还是原来的水平。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结 反思 ,水平才能长进。

错题本和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正的人,是会把知识简化,把书本读薄的。

一些考生不能正确解答问题,往往都是审题不仔细,匆匆忙忙看完题目,在题目条件没有吃透情况下就匆匆下笔解题,自然无确解决问题。

解题,步就是要认真审题,提高对审题的重视,戒掉急于下笔的毛病,吃透题目当中每一个条件和结论,这样才能发现题目中的隐含条件,找到解题思路,降低因审题不仔细造成的解题出错。

永远记住,适当慢一点,学会耐心仔细去审题,准确地把握题目中的与“量”,从题目中挖掘尽可能多的信息,才能找到正确解题方向。

2022高考数学必考知识点考点总结大全相关 文章 :

★ 学习方法指导与技巧总结

★ 高考必背知识点总结与归纳

★ 2022高三数学知识点

★ 高考生物必备大题知识点归纳

★ 高三上册数学教学总结2022

★ 2022高三数学知识点整理

★ 2022高考必背知识重点归纳

★ 高三数学期末知识点

★ 2022高考物理知识点归纳总结

★ 高三文科数学常考知识点整理归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高二数学知识点及公式2020

>>>

数学是人类知识活动留下来威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙,下面给大家分享一些关于 高二数学 知识点及公式,希望对大家有所帮助。

static/uploads/yc/20211129/abf274035c6d617dfc6c7f2016de3249.jpg"width="484"height="300"/>

高二数学知识点及公式1

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题 方法 :优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高二数学知识点及公式2

等数列

对于一个数列{an},如果任意相邻两项之为一个常数,那么该数列为等数列,且称这一定值为公,记为d;从项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

水平诱导名不变;符号看象限。等比数列

对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从项a1到第n项an的总和,记为Tn。

那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:

a2=a1-q,

a3=a2-q,

a4=a3-q,

````````

an=an-1-q,

将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。

此外,当q=1时该数列的前n项和Tn=a1-n

当q≠1时该数列前n项的和Tn=a1-(1-q^(n))/(1-q).

高二数学知识点及公式3

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

高二数学知识点及公式2020相关 文章 :

★ 2020高二数学知识点总结

★ 高二数学知识点总结2020

★ 2020高中三年数学知识点顺口溜与公式大全

★ 2020高中数学知识点梳理

★ 2020高考数学知识点总结大全

★ 高二数学知识点总结

★ 2020年高考数学知识点总结

★ 高考数学知识点总结2020

★ 2020高二数学题合集

★ 2020高二数学教案精选


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看