高考常见复合函数 高中常见复合函数
【高考】有没有哪位大哥能整理一个高考数学(文科)会用到的所有公式给我。。。麻烦了。。。拜托了。。
问老师小兄弟,你的提问证明你不喜看书,也不懂看书的重要性,因为你的问题就在高中数学5本书里,你认认真真的把课本看看应付高考足矣,因为书上的公式都全着呢,你又何必在这求人帮你总结呢?
高考常见复合函数 高中常见复合函数
高考常见复合函数 高中常见复合函数
(4)、2019年湖北高三2月联考数学理试题及
我不是说你不该在这提问,而是怕你不好好看书,却老想着走捷径成功,这是很不现实的,“与其临渊羡鱼,不如退而结网。”当你塌下心来把书看透时,就是你时!祝你学好数学!
复合函数的单调区间怎么求
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.复合函数的单调区间怎么求如下:
1、求复合函数的定义域。
2、把复合函数分解成若干个常见的基本函数。
3、分别判定常见的基本函数在定义域范围内的单调性。
4、由复合函数的增减性判断方法,写出复合函数的单调区间。
复合函数的单调性口诀:同增异减。
其具体含义为:
内外函数的单调性相同(同),则复合函数为增函数(增);内外函数的单调性相反(异),则复合函数为减函数(减)。因为外函数的定义域是内函数的值域,所以判断外函数的单调性时,判断的是外函数在内函数的值域(4)将中间变量的取值范围转化为自变量的取值范围;上的单调性。
复合函数定义域:
复合函数的定义域由内层函数和外层函数共同确定的。
1、复合函数是指变量x与y之间通过变量u形成的一种函数关系
通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。而在解复合函数时的思路如设fIg(x)1的定义域为D,即x·D,由此得g(x)·E,所以f的作用范围为E,又f对x作用,作用范围不变,所以x·E,E为f(x)的定义域等等。
2、复合函数中,内层函数的值域是外层函数的定义域
比如y=cos(sinx),令u=sinx,则y=cosu,u=sinx的值域就是y=cosu的定义域;y=√(sinx-x),就是y=√u,和u=sinx-x复合而来等等。
3、函数的定义域是根据函数要解决的问题来定义的,函数的定义域一般有三种定义方法:
函数有具体应用的实际背景。人为定义的定义域。例如,在研究某个函数时,仅考察函数的自变量在[0,10]范围内的一段函数关系。自然定义域,若函数的对应关系有解析表达式来表示,则使解析式有意义的自变量的取值范围称为自然定义域。
谁能帮我把复合函数解释一下
高三数学重要知识复合函数单调性依y=f(u),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”点精选总结1定义域
若函数y=f(u)的定义域是B﹐u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
复合函数的导数D={x|x∈A,且g(x)∈B}
编辑本段
周期性
设y=f(u),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1T2,任一周期可表示为kT1T2(k属于R+)
增减性
判断复合函数的单调性的步骤如下:(1)求复合函数定义域;
(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
(3)判断每个常见函数的单调性;
(5)求出复合函数的单调性。
例如:讨论函数y=0.8^(x^2-4x+3)的单调性。 复合函数的导数解:函数定义域为R。
令u=x^2-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须
将已知的所有条件加以转化。
复合函数的高阶导数公式
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等常见高阶导数8个公式是:
1、y=c,y'=0(c为常数) 。
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=ln∴ 函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。x,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
介绍:
1、导数的四则运算:(uv)'=uv'+u'v (u+v)'=u'+v' (u-v)'=u'-v' (u/v)'=(u'v-uv')/v^2。
2、原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'。
3、复合函数的导数: 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(称为链式法则)。
2023高考数学乙卷考试范围是什么
五、概率与统计关于2023高考数学乙卷考试范围是什么如下:
以下是根据历年高考数学乙卷的考试范围,进一步详细列出的主要知识点和题型:
一、函数与方程
1、一次函数和二次函数:函数的性质、图像、方程与不等式、函数关系等。
2①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.、指数函数和对数函数:函数的性质、图像、方程与不等式、函数关系等。
3、三角函数:正弦函数、余弦函数、正切函数的性质、图像、方程与不等式、函数关系等。
4、复合函数和反函数:复合函数的性质与求导、反函数的性质与图像等。
5、立体几何中的函数:立方体、棱柱、棱锥等几何体的表面积、体积与函数关系。
二、数列与数学归纳法
2、数学归纳法:数学归纳法的原理、基本步骤、证明思路等。
三、三角函数与解三角形
1、三角函数的性质与应用:三角函数的周期性、奇偶性、单调性等特征,以及解三角方程和证明三角恒等式等。
2、三角形的解析几何与面积计算:使用向量、坐标和解析几何方法解决三角形的相关问题。
四、平面向量与解析几何
1、向量的概念与性质:向量的定义、加减乘法、模、方向角等。
2、向量的共线与垂直:向量的共线判定、垂直判定、向量的投影等。
3、解析几何的基本概念与方程:点、直线、曲线的方程与性质,以及平面上点与直线之间的位置关系等。
1、随机与概率计算:随机的基本概念、概率计算、频率与概率的关系等。
2、统计图表解读与数据分析:直方图、折线图、饼图等统计图表的解读,以及频数、频率、平均数、中位数等数据的计算与分析。
六、导数与微分应用
1、导数的定义、计算、性质:函数的导数与导数的运算法则,包括常见函数的导数计算。
2、导数在函数图像、极值和曲线分析中的应用。
3、微分的概念与微分中值定理。
七、积分与定积分的应用
1、定积分的定义、计算、性质:定积分的性质、基本公式,以及常见函数的定积分计算。
2、定积分在几何图像、面积、体积和平均值计算中的应用。
以上列举的知识点和题型仅供参考,实际考试范围可能会因地区和年份而有所不同。因此,建议你参考当地门或相关提供的文件和指南,以获取确切和的考试范围信息。祝你考试顺利!
高三文科数学常考知识点整理归纳
数学已成为许多及地区的 教育 范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了高三文科数学常考知识点,供大家阅读参考。
高三文科数学常考知识点
一、导数的应用
1.用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益问题
3)面积、体积最(大)问题
二、推理与证明
1.归纳推理:归纳推理是 高二数学 的一个重点内容,其难点就是有部分结论得到一般结论,的 方法 是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
高三文科数学知识点
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
高三数学 知识点
一、、简易逻辑(14课时,8个)1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
三、数列(12课时,5个)1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数(4)将中间变量的取值范围转化为自变量的取值范围;量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
十一、概率(12课时,5个)1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验.选⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的中,正n边形的面积。在周长一定的简单闭曲线的中,圆的面积。在面积一定的n边形的中,正n边形的周长最小。在面积一定的简单闭曲线的中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
高三数学常考知识点
导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
数学的 学习方法
1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,思考、勇于探索的创新精神。
4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
高三文科数学常考知识点整理归纳相关 文章 :
★ 高三文科数学重点公式
★ 高三数学必考知识点
★ 高三文科数学公式总结
★ 高三年级文科数学学习方法总结
★ 高三文科数学方法
★ 高考数学必考重点知识大全
★ 高三数学复数知识点整理 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
设y=cos2x,则y'=
或者看看自己考败的试卷,制成一个错题集,这样记得的公式就不用费时间了设y=cos2x,则y'=-2sin2x。解题方法如下:
y=cosu,则y'=②求方程的根;-sinu
u=2x
所以u'=2
则y'=-sinuu'
=-sin2x2
=-2sin2x
复合函数的单调性的步骤如下:
1、求复合函数的定义域;
2、将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
3、判断每个常见函数的单调性;
4、将中间变量的取值范围转化为自变量的取值范围;
5、求出复合函数的单调性。
谁能帮我把复合函数解释一下
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;定义域
(7)球体:若函数y=f(u)的定义域是B﹐u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
复合函数的导数D={x|x∈A,且g(x)∈B}
编辑本段
周期性
设y=f(u),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1T2,任一周期可表示为kT1T2(k属于R+)
增减性
判断复合函数的单调性的步骤如下:(1)求复合函数定义域;
(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
(3)判断每个常见函数的单调性;
(5)求出复合函数的单调性。
例如:讨论函数y=0.8^(x^2-4x+3)的单调性。 复合函数的导数解:函数定义域为R。
令u=x^2-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须
将已知的所有条件加以转化。
数学高考必考知识点有哪些?
(3)求可导函数值与最小值的步骤:数学高考必考知识点有:
1、常用名称和术语:坡角、仰角、俯角、方位角、方向角。
2、轨迹方程的相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。3、等比数列爆强公式:S(n+m)=S(m)+q2mS(n)。
4、三次函数曲线其实是中心对称图形。它定义:设y=f(u),u=g(x),当x在u=g(x)的定义域Dg中变化时,u=g(x)的值在y=f(u)的定义域Df内变化,因此变量x与y之间通过变量u形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数(comite function),其中x称为自变量,u为中间变量,y为因变量(即函数)。有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有一条过该中心的直线与两旁相切。
5、复合函数奇偶性:内偶则偶,内奇同外。
高中数学复合函数什么都不会!!!
1、通项公式与求和公式:等数列和等比数列的通项公式与求和公式,以及在数列中的应用。内函数u=g(x),x∈A,u∈B,外函数y=f(u),u∈B
则y=f[g(x)],x∈A就是复合函数。
复①求导数;合函数这部分知识其实很简单。你只需要掌握三点就行了。
:准确的分成两个函数(一般来讲分成两个就足以解决问题了)。
第二:知道这两个函数的单调性。
第三:同增异减。
例如:y=3^(x^2-2x+2)就可以分成y=3^u与u=x^2-2x+2
在R上y=3^u单增,在(负无穷,1)上u=x^2-2x+2单减,y与u的增减性相反,则原函数为单减。
在(1,正无穷)上u=x^2-2x+2单增,y与u增减性相同,则原函数为单增。
希望能对你有帮助。
版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。
随便看看
- 2025-04-21 刘三姐对山歌歌词 刘三姐对山歌歌词PP
- 2025-04-21 阚清子称重新认识 阚清子重瞳
- 2025-04-21 向佳欣高考成绩 向佳欣的意义是什么
- 2025-04-21 如何申请新西兰工作签证申请
- 2025-04-21 高考英语阅读单词太难 高考英语阅读读不