高中数学:泰勒展开式的使用条件及重要性
泰勒展开式的使用条件
泰勒展开的条件是在展开点附近任意阶可导,且充分条件是泰勒公式的余项能趋于零。
高中数学:泰勒展开式的使用条件及重要性
高中数学:泰勒展开式的使用条件及重要性
高中数学:泰勒展开式的使用条件及重要性
高中数学:泰勒展开式的使用条件及重要性
资料扩展:
泰勒展开式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。
是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。
18世纪早期英国牛顿学派秀的代表人物之一的数学家泰勒(Brook Taylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的定理——泰勒定理。
1717年,泰勒用泰勒定理求解了数值方程。泰勒公式是从格雷戈里——牛顿插值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。
泰勒公式的运用条件
泰勒公式的使用条件:实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。
泰勒展开式的重要性体现在以下五个方面:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误。
4、证明不等式。
5、求待定式的极限。
扩展资料泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。
泰勒定理开创了有限分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。
参考资料来源:
结果是1,不能用泰勒公式,因为皮埃尔余项不是高阶无穷小,无法忽略
给你两种方法吧
1: lim[(x+sinx)/(x-sinx)]=limx/x=1
2:lim[(x-1)/(x+1)]<=lim[(x+sinx)/(x-sinx)]<=lim[(x+1)/(x-1)],同样能得到1,不懂继续问我
首先X趋近于无穷大的时候这个极限是1.
泰勒公式运用的条件是余项趋于0.
泰勒公式的使用条件
泰勒公式的使用条件是极限必须都是存在的。在数学中,泰勒级数是用无限项连加式,也就是级数来表示一个函数,这些相加的项由函数在某一点的导数求得。
泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒的名字来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做迈克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。泰勒级数在近似计算中有重要作用。
泰勒公式什么时候可以用
泰勒公式是在一点处展开,函数必须在那一点处n阶倒数存在,在x=0处是麦克劳林展开式,一般在极限里面用的是麦克劳林展开公式,所以必须x趋于0的时候才能使用。
x趋于0才能使用是说极限式里面的x趋于0,然后可以用麦克劳林公式做展开,而且必须是x=0处展开,泰勒实际上就是高级的等价无穷小替换,如果说展开的高阶小o(x)不是趋于0的,那就错了。这也就是说麦克劳林仅仅替代了那个x0=0,然后就将一个复杂的函数转换成了一个简单的幂次函数,并且这个幂次函数在x0=0的某邻域是成立的。
版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。
随便看看
- 2025-03-20 学校教师生日贺卡 学校教师生日贺卡祝福
- 2025-03-20 浙江2020年技能高考_浙江省技能高考分数
- 2025-03-20 冲绳酒店观光专业学校 冲绳高级酒店
- 2025-03-20 泰安年高考语文成绩_2021泰安高三语文期
- 2025-03-20 会计学校怎么面试_会计专业学校面试问题