2016年数学高考导数题 2016年数学高考导数题难吗

高中数学导数难题解题技巧

导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。下面是我为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!

2016年数学高考导数题 2016年数学高考导数题难吗2016年数学高考导数题 2016年数学高考导数题难吗


2016年数学高考导数题 2016年数学高考导数题难吗


1高中数学导数难题解题技巧

1.导数在判断函数的单调性、最值中的应用

利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用

利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。

例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。导数知识能针对方程求根,根据导函数的求解能判断原函数的根的个数。在解这一类问题的时候,教师要善于学生利用导函数与X轴的交点个数来判断方程根的个数。

例如,某一证明问题:方程x-sinx=0,只有一个根x=0。在分析这一问题时实际上就是利用函数的单调性质和特殊值来确定f(x)=0。其证明过程需首先利用到导数知识,令f(x)=x-sinx,定义域为R,求导f(x)=1-cosx>0,再利用函数单调性及数形结合思想,求得x=0是次方程的根。此内容的应用就是最为典型的导数知识在方程求根中的应用。

3高中数学的解题技巧

学会审题,才会解题

考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。

先做简单题,后做难题

如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的 经验 告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。还有善于把难题转换成简单的题目的能力。

4高中数学的解题技巧

审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和 方法 的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。

类型题掌握,提升发散性

学习的过程也是知识的积累过程,所以,不论是哪一学科,都不能期待能一朝实现学校目标,而数学亦是如此。所以,在日常解答某些类型数学题的时候,对其题型加以掌握,这是提高学生解题能力,培养学生解题技巧的重要途径之一,并且效果良好。

但是有一点我们必须铭记,类型习题的整理和记忆是指对其解题思路的记忆,并不是对其解答过程的记忆。如一位学生只是对这道题的解题过程加以记录,不去分析 2高中数学解题中导数的妙用,不去思考其解答方式的亮点,那么即使他整理再多的习题,也无法取得应有的效果,只会将学习停留在表面。

2. 高中数学六种解题技巧与五种数学答题思路

3. 高二数学不好怎么办?遇到困难怎么办

4. 高中数学导数练习题及

3)列表由导函数的正负确认原函数的单调性和极值、最值5. 高中数学导数测试题及

6函数与导数解题技巧:. 高二数学学习方法指导与学习方法总结

7. 高二数学:学习方法 导数如何学

8. 高中数学大题的解题技巧及解题思想

9. 高中数学解答题8个答题模板与做大题的方法

10. 高考数学答题技巧

数学高考导数怎么解题还有证明等比老写不出来

1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.

2.熟记基本导数当a=±√6/2的时候,△=0,f′(x) >= 0 在R上恒成立,所以f(x)在R上单调递增,在(-∞,0)和(1,+∞)更加单调递增了,跟f(x) 的拐点是否落在(-∞,0)和(1,+∞)上无关了,所以a=√6/2和a=-√6/2都满足题意,不知道你是不是明白。公式;掌握两个函数和、、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.

3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件a-1<=-√3(导数在极值点两侧异号);会求一些实际问题(一般指1) 注意:上述公式中A^n表示A的n次方。单峰函数)的值和最小值.

2. 等比数列:a(n+1)/an=q, n为自然数。 (2)通项公式:an=a1q^(n-1); 推广式: an=am·q^(n-m); (3)求和公式:Sn=na1(q=1) Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)q^n ( 即a-aq^n) (前提:q不等于 1) (4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=apaq; ②在等比数列中,依次每 k项之和仍成等比数列. (5)“G是a、b的等比中项”“G^2=ab(G≠0)”. (6)在等比数列中,首项A1与公比q都不为零.

一道高考数学题 求教 关于函数与导数的

(1):a-√(3-2a^2)>=0

1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)。

2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)。

3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)。

4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算。

5、了解线性规划的意义及简单应用。

6、熟悉圆锥曲线中基本量的计算。

7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)。

1、了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌

握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.

2、熟记基本导数公式;掌握两个函数和在 x > 0 时 存在单调递减闭区间、、积、商的求导法则.了解复合函数的求导

法则,会求某些简单函数的导数.

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和

充分条件(导数在极值点两侧异号);会求一些实际③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。高考数学导数主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线问题(一般指单峰函数)的值和最小值。

这种求证需要用到放缩法,把原函数经过变化,扩大或者缩小,就能证明出。本人也不会这种题,不能为你解答

高考压轴题如何破高考数学导数压轴题目五种秒杀

导数知识在方程求根解题中的妙用

1.不要再做难题,只把以学会的知识加深记牢,反复多做。保证高考不出现大的失误。某种程度上说高考比的是谁的失审题技巧误多。 2.要调整好心态,了解高考只是人生中的一次机会,但不是你的全部。在人的道路上还机会。 3.生活上不要做大的3.导数在求参数的取值范围时的应用改变

全国高考数学一卷导数压轴题的难度有多高?

1. 高中数学解题技巧冲刺得分题

就是大概只有百分之二三十的考生可以做出来,一般大题压轴题是知识及做题速度的综合,所2.良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、 立即下手解题,而应通览一遍整套试题,摸透题情,然后稳一两个易题熟题,让自己产生"旗开得胜”的快意,从而有一一个良好的开端,以振奋精神,鼓舞信心,很快进入思维状态,以难度还是比较大的。

甚难。有甚很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。多人都说,这些题甚复杂,完全找不到解法,且这些题,堪比高中的奥数题。

难度是比平时的模考还要难,在很多的考生采访当中没有几个人说不难的,而且大多数的人都是没有算出,看来今年高考数学的难度是很大的。

高考导数真的很难吗

函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

我认为高考导数比较难。高考数学导数是我们高考的必考内容,而且考点占比很多,想要都吃透并没有那么容易,但是题型无论怎么变,其实都万变不离其宗,都是有它固定的解题模板的。

如果是开区间的话,a的范围很广啊

掌握到一类题型的解题规律,其实很重要,为什么说导数比较难呢,因为它常常和函数的知识联系到一起,也总是一起去考,所以,导数题型的综合能力就比较强。

解析几何解题技巧:

可以根据以下查看自己所不会的;

1、单调性问题

研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2、分离参数构造法

分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题。

3、利用导数研究切线问题

关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:①切点在切线上;②切点在曲线上;③斜率等于导数。用这三句话,百分之百可以解答全部切线问题。

4、导数在函数极值中的应用

利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。

高考如何考导数大题

数学题重在理解基本概念及公式的灵活运用,基础知识是关键,掌握了基础知识之后就需要通过足够的练习来加深对知识的运用,这样才能把数学学到炉火纯青的地步。

高考数学导数大题出题特点及解法技巧:

导数知识在函数解题中的妙用

1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x之间的区别。

2).单调性,极值,值域,最值问题。

2.若题目考察的是曲线的切线,分为两种情况:

(1)关于曲线在某一点的切线,求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.

(2)关于两曲线的公切线,若一直线同时与两曲线相切,则称该直线为两曲线的公切线.

高考导数有什么题型

导数的解题技巧和思路

①确定函数f(x)的定义域(最容易忽略的,请牢记);

②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间;

一般来说,一到比较温和的导数题的会在问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:

先求出所给函数的导函数,然后利用题目所给的已知条件,以上述种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

高考数学解题法 数学解题套路

高考数学解题方法 1.思路思想提炼法 催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。可以快速掌握。

高考数学有哪些解题方法呢,数学的套路有什么呢,下面我为大家分析一下,仅供大家参考。

高考数学导数解题方法 导数的基本问题

1.题型:

1).切线问题。

3).函数零点(方程的根)的个数和分布问题。

4).不等式恒成立、存在性、不等式证明问题。

5).与数列、不等式、解析几何的综合问题。

2.常规步骤:

1)求导数并变形,写出定义域。

变形的方法:

①.整式:因式分解或配方。

②.分式:通分母,并因式分解。

③.指数式:提取公因式。

④根式:分子有理化

2)解方程 , 判断导数的正负

判断导数正负的方法:

①.检验法。②.图像法。③.单调性法。④.求导数的导数。

4)画函数草图解决问题。

1.求幂指函数的三种未定式,运用e抬√(3-2a^2)<=3-a头法转为基本未定式,然后再利用罗必达法则和等价无穷小量求极限。

2.求最值、极值或证明不等式,运用函数的导数,借助单调性研究问题。

3.微积分中值定理的运用,运用找原函数法(积分法)、公式法或者经验法等构造辅助函数证明。

4.二重积分的计算,运用“X-型(先Y后X),Y-型(先X后Y),-型(先r后)”。

高考数学高效解题方法 1.考前要摒弃杂念,排除干扰思绪,使大脑处于"空白”状态,创设数学情境,进而酝酿数学思维,提前进入"角色”, 通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压励, 轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

2. 典型题型精熟法 抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。

3. 逐步深入纠错法 巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。

我明天要参加数学高考,求一道导数题的解答。

高中数学导数难题解题技巧相关 文章 :

希望能帮到你,

8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题

高考加油

f'(x)=3x^2-2ax+a^2-1

f'(x)=0

Δ=4a^2-4×3×(a^2-1)

=12-8a^2

x=[2a±√(12-8a^2)]/6

=[a±√(3-2a^2)]/3

根据题意,有:

[a-√(3-2a^2)]/3>=0...........(1)

[a+√(3-2a^2)]/3<=1..........(2)

a>=√(3-2a^2)

a^2>=3-2a^2

3a^2>=3

a^2>=1

①应用导数求函数的单调区间,或判定函数的单调性;a<=-1或者a>=1

(2):a+√(3-2a^2)<=3

3-2a^2<=9-6a+a^2

3a^2-6a-6>=0

3(a^2-2a-2)>=0

a^2-2a-2>=0

(a-1)^2>=3

a<=1-√3

或者 a-1>=√3

a>=1+√3

综合(1)(2),a的取值范围:(-∞,-1]U[1+√3,+∞)

数学函数一题

1 b=2,h(x)=lnx-(a/2)x^2+2x (lnx有意义,则x>0)

(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。求导1/x-ax-2<0有解

1/x^2-2x

即1/x^2-2x的最小值

上式的导数-1利用导数求函数中的某些参数的取值范围,成为近年来高考的 热点 。在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。/x^3-2=0 x=-2^(1/3)

②应用导数求函数的极值与最值;③应用导数解决有关不等式问题。将上值代入不等式的

a〉1/2^(2/3)-22^(1/3)

请提问人再看下题目,是否应该是这样的:


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看